
www.manaraa.com

Vol.:(0123456789)1 3

Computing and Software for Big Science             (2021) 5:6  
https://doi.org/10.1007/s41781-020-00046-8

EDITORIAL

Education and Training for Software Developers in Particle Physics

Stefan Kluth1

 
© The Author(s) 2021

Particle physics emerged as a field starting with the early 
balloon experiments in the ‘30s of the last century. Univer-
sal digital computers were invented at about the same time, 
by Zuse and his company in Germany in 1941, and as the 
ENIAC [Electronic Numerical Integrator and Computer] 
machine in the United States in 1945.1

Nuclear and particle physicists were quick in realizing the 
potential of digital computers for the analysis of their analog 
data consisting of cloud or bubble chamber photographs of 
collisions produced in accelerator experiments or emulsions 
exposed to cosmic radiation in the atmosphere. The key to 
success was digitization of the images and subsequent statis-
tical analysis of the data. Most of the basic pattern recogni-
tion and parameter extraction algorithms of our field were 
already invented in the 1950s and 1960s.

How is this relevant to our subject? The early adoption of 
digital computers, compared to many other scientific fields, 
led to the development of a separate “software culture” in 
our field. The basic common denominator with industry and 
other science fields was programming languages, mostly 
Fortran, and the operating systems. Up until the 1990s, and 
to some degree still continuing today, many tools and librar-
ies were developed by physicists in the field. The young 
scientists had essentially no structured and pedagogical 
teaching about software development.

It is still an established pattern to assign full-time soft-
ware development tasks to students or young postdocs with 
no training except studying some existing code. In this con-
text, the development of a physics reconstruction, simulation 
or analysis workflow is mainly a software development task, 
and most of the time on the project is spent on developing, 
testing, debugging, and optimizing the code producing the 
physics results.

Few in our field would disagree with the statement that 
the software stacks of the big collaborations are not in a very 

good state. Core parts were developed decades ago, with 
the limited version of C++ of the time, and with sometimes 
poorly understood and implemented concepts of object-ori-
ented software engineering. Some packages are now with-
out consistent and knowledgeable maintenance, because it is 
difficult to find people ready to take responsibility for such 
legacy code.

Our subject here is education and training (Bildung und 
Ausbildung in German). The distinction between the two 
terms is important: training refers to the transfer of a par-
ticular technical skill such as understanding the C++ syn-
tax, using libraries for parallel programming, or applying a 
debugging or performance optimization tool. Education goes 
much further, and should enable the student to understand 
concepts of software engineering and computing transcend-
ing programming languages, specific libraries or details of 
the current hardware.

We can work successfully to improve the state of our soft-
ware not only in terms of run time or memory efficiency, but 
also in terms of ease of maintenance, simplicity of adding 
new features, and absence of errors. In order to achieve this 
we must focus on the people doing the work and give them 
the training and education they need to solve their tasks with 
confidence and professionalism.

I was lucky to benefit from education on object-oriented 
software engineering as a postdoc at the Lawrence Berke-
ley National Laboratory (LBNL), Berkeley, California in 
1998. At this time the BaBar Collaboration organized these 
courses in order to boost the development of the experiment 
software in C++. The instructor was Robert C. (Uncle Bob) 
Martin, today one of the best-known software engineers, co-
author of the Agile Manifesto in 2001, and author of numer-
ous popular books on software engineering. I realized later, 
working again on the OPAL experiment with its old Fortran 
code base and then on ATLAS, how much I had benefited 
from the education in Bob Martin’s courses, since I could 
now see the concepts and strategies behind such large soft-
ware projects. *	 Stefan Kluth 

	 skluth@mpp.mpg.de

1	 Max Planck Institute for Physics, Munich, Germany
1  The Turing-completeness of the Zuse Z3 was shown only in 1998 
and was not a design goal of its inventors.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-00046-8&domain=pdf


www.manaraa.com

	 Computing and Software for Big Science             (2021) 5:6 

1 3

    6   Page 2 of 2

I decided to pass on this knowledge and started to develop 
my own courses, merging concrete examples from particle 
physics with object-oriented software engineering concepts. 
The courses were held at the Max Planck Institute for Phys-
ics, for the ATLAS collaboration at CERN, as lectures at the 
Ludwig-Maximilians-University (LMU), or as contributions 
to software and computing schools. Later, collaborating with 
my colleagues, in 2010 we began a series of “Advanced pro-
gramming concepts” workshops, adding the topics of “unit 
testing”, “refactoring”, performance optimization, and 
generic programming to the program [1]. The evaluation of 
feedback from participants [1] was generally rather positive 
and encouraged us to continue the effort.

There are of course many schools on software and com-
puting aspects in particle physics and related fields, such as 
the CERN School of Computing (CSC), the GridKa School, 
and many others (see e.g. [2]). These events cover a broad 
range of important technical aspects of software develop-
ment and computing systems, and play an important role 
in providing training in our community. However, none of 
these events will help to fundamentally improve the subop-
timal quality of a large fraction of our software, since this 
would require not only technical improvements but also a 
general appreciation of the main driving forces in a large 
project by at least a majority of the contributors.

Improving on the state of education of our developers 
would require stepping back from teaching technical aspects 
in some cases and making room for the big concepts like 
object orientation, generic programming, dependency con-
trol, refactoring, and unit testing. A well-educated developer 
will be able to discover the need for a certain technical skill 
by herself, but even the technically excellent programmer, 
after visiting many schools without a good grasp of the con-
cepts, may find himself wasting time and effort on unes-
sential problems.

Now, I have made some perhaps provocative statements, 
and not all readers will agree. The problem is that we have 
very little hard information publicly available, such as 
software quality metrics, unit test coverage, or studies of 

efficiency of development workflows, to name just some 
examples of interesting topics.

In order to change this in the future I would like to 
encourage you to study such aspects of software develop-
ment in your domain and publish the results in this journal. 
If you are involved in teaching topics in software develop-
ment and computing, as training or education, please collect 
feedback from participants and publish your findings here. 
Such reports will help us to identify problems with software 
development in our community and find ways to address 
them by providing adequate training and education.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Kluth S, Pia MG, Schoerner-Sadenius T, Steinbach P (2015) 
“How do particle physicists learn the programming concepts they 
need?. In: CHEP 2015 proceedings, arXiv​:1505.04604​

	 2.	 hepsoftwarefoundation.org/Schools/events.html

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1505.04604

	Education and Training for Software Developers in Particle Physics
	References




